6t^2-850t+1=0

Simple and best practice solution for 6t^2-850t+1=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6t^2-850t+1=0 equation:


Simplifying
6t2 + -850t + 1 = 0

Reorder the terms:
1 + -850t + 6t2 = 0

Solving
1 + -850t + 6t2 = 0

Solving for variable 't'.

Begin completing the square.  Divide all terms by
6 the coefficient of the squared term: 

Divide each side by '6'.
0.1666666667 + -141.6666667t + t2 = 0

Move the constant term to the right:

Add '-0.1666666667' to each side of the equation.
0.1666666667 + -141.6666667t + -0.1666666667 + t2 = 0 + -0.1666666667

Reorder the terms:
0.1666666667 + -0.1666666667 + -141.6666667t + t2 = 0 + -0.1666666667

Combine like terms: 0.1666666667 + -0.1666666667 = 0.0000000000
0.0000000000 + -141.6666667t + t2 = 0 + -0.1666666667
-141.6666667t + t2 = 0 + -0.1666666667

Combine like terms: 0 + -0.1666666667 = -0.1666666667
-141.6666667t + t2 = -0.1666666667

The t term is -141.6666667t.  Take half its coefficient (-70.83333335).
Square it (5017.361113) and add it to both sides.

Add '5017.361113' to each side of the equation.
-141.6666667t + 5017.361113 + t2 = -0.1666666667 + 5017.361113

Reorder the terms:
5017.361113 + -141.6666667t + t2 = -0.1666666667 + 5017.361113

Combine like terms: -0.1666666667 + 5017.361113 = 5017.1944463333
5017.361113 + -141.6666667t + t2 = 5017.1944463333

Factor a perfect square on the left side:
(t + -70.83333335)(t + -70.83333335) = 5017.1944463333

Calculate the square root of the right side: 70.832156866

Break this problem into two subproblems by setting 
(t + -70.83333335) equal to 70.832156866 and -70.832156866.

Subproblem 1

t + -70.83333335 = 70.832156866 Simplifying t + -70.83333335 = 70.832156866 Reorder the terms: -70.83333335 + t = 70.832156866 Solving -70.83333335 + t = 70.832156866 Solving for variable 't'. Move all terms containing t to the left, all other terms to the right. Add '70.83333335' to each side of the equation. -70.83333335 + 70.83333335 + t = 70.832156866 + 70.83333335 Combine like terms: -70.83333335 + 70.83333335 = 0.00000000 0.00000000 + t = 70.832156866 + 70.83333335 t = 70.832156866 + 70.83333335 Combine like terms: 70.832156866 + 70.83333335 = 141.665490216 t = 141.665490216 Simplifying t = 141.665490216

Subproblem 2

t + -70.83333335 = -70.832156866 Simplifying t + -70.83333335 = -70.832156866 Reorder the terms: -70.83333335 + t = -70.832156866 Solving -70.83333335 + t = -70.832156866 Solving for variable 't'. Move all terms containing t to the left, all other terms to the right. Add '70.83333335' to each side of the equation. -70.83333335 + 70.83333335 + t = -70.832156866 + 70.83333335 Combine like terms: -70.83333335 + 70.83333335 = 0.00000000 0.00000000 + t = -70.832156866 + 70.83333335 t = -70.832156866 + 70.83333335 Combine like terms: -70.832156866 + 70.83333335 = 0.001176484 t = 0.001176484 Simplifying t = 0.001176484

Solution

The solution to the problem is based on the solutions from the subproblems. t = {141.665490216, 0.001176484}

See similar equations:

| 3=-2x+5y | | -6(x+1)-18=22+8 | | x-9=-3+4 | | -3/8x=15 | | 15(x-4)=-7-8 | | 9(5+x)=8(x-5) | | 3x-30=x+30 | | 7+2y=4y | | 3sin^2-7sinx+2=0 | | -w/6=7 | | 20-5(x-1)=0 | | 4x+14-3x=-8-12 | | 31n+199= | | -1/3p=9 | | 9x-15=-69 | | 3-22=8x-5-7x | | 8ln(4)-8ln(2)= | | 3(y-4)-2y=-11-3 | | -4d=60 | | 0.50x+0.35(50)=21.5 | | ((x^2)-(y^2))dx+(3xy)dy=0 | | -18y=-36 | | -4x=1-(-11) | | 7x-(8y)=10 | | (24n+7n)+(192+7)= | | 5s-2+15+3s=5 | | 1+lnx=0 | | 2x+5=-3x+20 | | 15-46=3(x-2)-7 | | -1/16x=-9 | | X=7-4x | | -6(2b+1)+13(b-7)=0 |

Equations solver categories