If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 6t2 + -850t + 1 = 0 Reorder the terms: 1 + -850t + 6t2 = 0 Solving 1 + -850t + 6t2 = 0 Solving for variable 't'. Begin completing the square. Divide all terms by 6 the coefficient of the squared term: Divide each side by '6'. 0.1666666667 + -141.6666667t + t2 = 0 Move the constant term to the right: Add '-0.1666666667' to each side of the equation. 0.1666666667 + -141.6666667t + -0.1666666667 + t2 = 0 + -0.1666666667 Reorder the terms: 0.1666666667 + -0.1666666667 + -141.6666667t + t2 = 0 + -0.1666666667 Combine like terms: 0.1666666667 + -0.1666666667 = 0.0000000000 0.0000000000 + -141.6666667t + t2 = 0 + -0.1666666667 -141.6666667t + t2 = 0 + -0.1666666667 Combine like terms: 0 + -0.1666666667 = -0.1666666667 -141.6666667t + t2 = -0.1666666667 The t term is -141.6666667t. Take half its coefficient (-70.83333335). Square it (5017.361113) and add it to both sides. Add '5017.361113' to each side of the equation. -141.6666667t + 5017.361113 + t2 = -0.1666666667 + 5017.361113 Reorder the terms: 5017.361113 + -141.6666667t + t2 = -0.1666666667 + 5017.361113 Combine like terms: -0.1666666667 + 5017.361113 = 5017.1944463333 5017.361113 + -141.6666667t + t2 = 5017.1944463333 Factor a perfect square on the left side: (t + -70.83333335)(t + -70.83333335) = 5017.1944463333 Calculate the square root of the right side: 70.832156866 Break this problem into two subproblems by setting (t + -70.83333335) equal to 70.832156866 and -70.832156866.Subproblem 1
t + -70.83333335 = 70.832156866 Simplifying t + -70.83333335 = 70.832156866 Reorder the terms: -70.83333335 + t = 70.832156866 Solving -70.83333335 + t = 70.832156866 Solving for variable 't'. Move all terms containing t to the left, all other terms to the right. Add '70.83333335' to each side of the equation. -70.83333335 + 70.83333335 + t = 70.832156866 + 70.83333335 Combine like terms: -70.83333335 + 70.83333335 = 0.00000000 0.00000000 + t = 70.832156866 + 70.83333335 t = 70.832156866 + 70.83333335 Combine like terms: 70.832156866 + 70.83333335 = 141.665490216 t = 141.665490216 Simplifying t = 141.665490216Subproblem 2
t + -70.83333335 = -70.832156866 Simplifying t + -70.83333335 = -70.832156866 Reorder the terms: -70.83333335 + t = -70.832156866 Solving -70.83333335 + t = -70.832156866 Solving for variable 't'. Move all terms containing t to the left, all other terms to the right. Add '70.83333335' to each side of the equation. -70.83333335 + 70.83333335 + t = -70.832156866 + 70.83333335 Combine like terms: -70.83333335 + 70.83333335 = 0.00000000 0.00000000 + t = -70.832156866 + 70.83333335 t = -70.832156866 + 70.83333335 Combine like terms: -70.832156866 + 70.83333335 = 0.001176484 t = 0.001176484 Simplifying t = 0.001176484Solution
The solution to the problem is based on the solutions from the subproblems. t = {141.665490216, 0.001176484}
| 3=-2x+5y | | -6(x+1)-18=22+8 | | x-9=-3+4 | | -3/8x=15 | | 15(x-4)=-7-8 | | 9(5+x)=8(x-5) | | 3x-30=x+30 | | 7+2y=4y | | 3sin^2-7sinx+2=0 | | -w/6=7 | | 20-5(x-1)=0 | | 4x+14-3x=-8-12 | | 31n+199= | | -1/3p=9 | | 9x-15=-69 | | 3-22=8x-5-7x | | 8ln(4)-8ln(2)= | | 3(y-4)-2y=-11-3 | | -4d=60 | | 0.50x+0.35(50)=21.5 | | ((x^2)-(y^2))dx+(3xy)dy=0 | | -18y=-36 | | -4x=1-(-11) | | 7x-(8y)=10 | | (24n+7n)+(192+7)= | | 5s-2+15+3s=5 | | 1+lnx=0 | | 2x+5=-3x+20 | | 15-46=3(x-2)-7 | | -1/16x=-9 | | X=7-4x | | -6(2b+1)+13(b-7)=0 |